バナナでもわかる話

計量経済学・統計学が専門の大学院生です。統計学・経済学・投資理論・マーケティング等々に関する勉強・解説ブログ。ときどき趣味も。極力数式は使わずイメージで説明出来るよう心掛けていますが、時々暴走します。

統計検定1級対策問題集~正規分布編~

統計検定1級対策のために役立ちそうな計算問題をまとめるやつやっていきます。
統計検定前の最終チェックや、統計検定の勉強何をすれば分からないという場合に活用ください。


今回は正規分布関連。
多変量正規分布はまた別記事でやるとして、今回は1変量の正規分布周りで必要な話を導出しておきます。



スポンサーリンク


目次

正規分布の特徴

 f(x) = \frac{1}{\sqrt{2 \pi \sigma^2}}exp(-\frac{(x-\mu)^2}{2\sigma^2})

・連続値の分布
 x \in \mathbb{R}
 \sigma≧0


モーメント周りの計算

積率母関数の導出

積率母関数の定義は次の通りでした。
 E[exp(tx)]

計算していきます。

 E[exp(tx)]=\int_{-\infty}^{\infty} \frac{exp(tx)}{\sqrt{2 \pi \sigma^2}} exp(-\frac{(x-\mu)^2}{2 \sigma^2}) dx

 =\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi \sigma^2}} exp(tx-\frac{(x-\mu)^2}{2 \sigma^2}) dx

 z=\frac{x-\mu}{\sigma}とおくと、

 =\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} exp(t\sigma z +t \mu-\frac{z^2}{2}) dz

 = exp(t\mu) \int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} exp(-\frac{1}{2} \{ (z-t \sigma)^2 -t^2 \sigma^2\}) dz

 Z=z-t \sigmaとおくと、

 = exp(t\mu +\frac{t^2 \sigma^2}{2}) \int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} exp(-\frac{1}{2}  Z^2 ) dZ

 = exp(t\mu +\frac{t^2 \sigma^2}{2})…(標準正規密度関数の和は1)

期待値の導出

定義に従った計算

まず、定義に従って期待値を求めてみます。
 E[x]=\int_{-\infty}^{\infty} \frac{x}{\sqrt{2 \pi \sigma^2}} exp(-\frac{(x-\mu)^2}{2 \sigma^2}) dx

 =\int_{-\infty}^{\infty} \frac{(x-\mu+\mu}{\sqrt{2 \pi \sigma^2}} exp(-\frac{(x-\mu)^2}{2 \sigma^2}) dx

 =\int_{-\infty}^{\infty} \frac{(x-\mu}{\sqrt{2 \pi \sigma^2}} exp(-\frac{(x-\mu)^2}{2 \sigma^2}) dx +\mu

 z=\frac{x-\mu}{\sigma}とおくと、

 = \int_{-\infty}^{\infty} \frac{\sigma z}{\sqrt{2 \pi}} exp(-\frac{z^2}{2}) dz +\mu

 = -\frac{\sigma}{\sqrt{2 \pi}}\int_{-\infty}^{\infty} (-z) exp(-\frac{z^2}{2}) dz +\mu

 = -\frac{\sigma}{\sqrt{2 \pi}} [exp(-\frac{z^2}{2}) ]_{-\infty}^{\infty} +\mu

 =\mu



スポンサーリンク


分散の導出

定義に従った計算

 Var[x]=\int_{-\infty}^{\infty} \frac{(x-\mu)^2}{\sqrt{2 \pi \sigma^2}} exp(-\frac{(x-\mu)^2}{2 \sigma^2}) dx

ここで、 z=\frac{x-\mu}{\sigma}とおくと

 Var[x]=\sigma^2 \int_{-\infty}^{\infty} \frac{z^2}{\sqrt{2 \pi}} exp(-\frac{z^2}{2}) dz

 = -\sigma^2 \int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} \{z(-z exp(-\frac{z^2}{2}))\} dz

ここで \int f^{'} ・ g=[f ・ g] -\int f ・ g^{'}を用いて

 = -\sigma^2\{ \frac{1}{\sqrt{2 \pi}} [z exp(-\frac{z^2}{2})]_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} exp(-\frac{z^2}{2}) dz \}

 =\sigma^2  \int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} exp(-\frac{z^2}{2}) dz

 =\sigma^2

正規分布の再生性の証明

先ほど示したように、積率母関数は次のようでした。

 exp(t\mu +\frac{t^2 \sigma^2}{2})

異なる二つの正規分布の積率母関数の積は次のよう。

 exp(t(\mu_1+\mu_2) +\frac{t^2 (\sigma_1^2 +\sigma_2^2))}{2})

これはやはり正規分布。
積率母関数の一意性より、再生性が示せた。

リンク

統計学を勉強するためのオススメ本

www.bananarian.net

2017年数理1級の解説記事

www.bananarian.net

その他の問題記事

統計検定1級対策問題集~二項分布編~

www.bananarian.net

統計検定1級対策問題集~ポアソン分布編~

www.bananarian.net

統計検定1級対策問題集~負の二項分布編~

www.bananarian.net

統計検定1級対策問題集~正規分布編~

www.bananarian.net

統計検定1級対策問題集~指数分布編~

www.bananarian.net

統計検定1級対策問題集~ガンマ分布編~

www.bananarian.net